Progression in Addition EYFS - Y6

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as', addend + addend = sum.

EYFS

Before addition can be introduced, children need to have a secure knowledge of number in order to begin addition. To do this, children need to become familiar with all numbers to 20 and understand what those numbers mean.
Children are then introduced to the concept of addition through practical games and activities. This is reinforced by opportunities provided in the outdoor area for the children to use addition e.g. adding together groups of building blocks, twigs etc. Children build on their previous knowledge of 'more' by learning that adding two groups of objects together gives them a larger number (more objects). Adults model addition vocabulary supported by age appropriate definition. An example of this is "addition means we add two groups together / we put 2 lots of objects together. Equals means we find out how many we have got altogether. 3 add 2 equals 5 ! We have got 5 altogether". Adults support children in recording their addition calculations in the written form on whiteboards and in their maths books.

Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole (YR \& Y1)	Use other resources too e.g. eggs, shells, teddy bears, cars). Use real life relevant examples for children.	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Counting on using number lines (Y1)	Using cubes or Numicon first, then alongside a number line.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2 ?
Regrouping to make 10 (Y2-Y6)	Using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

St Anselm's Mathematics Calculation Strategies Progression Map 2023-2024

$\begin{aligned} & \mathrm{TO}+\mathrm{Os} \\ & (\mathrm{Y} 2) \end{aligned}$ Place value counters and bead stings can also be used.	Using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$
TO + TO with exchanging (Y2)	Using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart.	Looking for ways to make 10. (Bridging 10) $\begin{aligned} & 30+20=50 \\ & 5+5=10 \\ & 50+10+1=61 \end{aligned}$
Use of place value counters to add HTO + TO, HTO + HTO etc	When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.	Children to represent the counters in a place value chart, circling when they make an exchange.	Formal written method - column addition $\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$
Adding up to 5-digit numbers.	Recap above emphasising the 'exchange' process.	Recap above emphasising the 'exchange' process.	Children should be confident in using the formal written method of column addition. Focus on procedural variation - making links between calculations.

St Anselm's Mathematics Calculation Strategies Progression Map 2023-2024

Conceptual variation; different ways to ask children to solve 21 + 34 =

Word problems:
In year 3, there are 21 children and in year 4,
there are 34 children. there are 34 children.
How many children in total?
$21+34=55$. Prove it

$+34$
$21+34=$ $=21+34$
 sum of twenty one and thirtyfour.

Progression in Subtraction EYFS - Y6

Key language: take away, less than, the difference, subtract, minus, fewer, decrease minuend - subtrahend = difference

EYFS

Before subtraction can be introduced, children need to have a secure knowledge of number in order to begin subtraction. Children are then introduced to the concept of subtraction through practical games and activities. This is reinforced by opportunities provided in the outdoor area for the children to count e.g. counting building blocks, twigs etc. Children build on their previous knowledge of 'less' by learning that subtracting means taking away a certain number of objects from a group (leaving them with less objects). Adults model subtraction vocabulary supported by age appropriate definition. An example of this is "subtraction means we take away objects from a group / we have 11 got less objects now. Equals means we find out how many we have got left. Wow! We have only got 3 left!" Adults support children in recording their subtractions in the written form on whiteboards and in their maths books.

Strategy	Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole	Ten frames, Numicon, cubes and other items such as beanbags could be used. $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	$\begin{aligned} 4-3 & = \\ & =\overline{4-3} \end{aligned}$4 3 $?$

Counting back	Using number lines or number tracks Children start with 6 and count back 2. $6-2=4$	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line.
Finding the difference	Using cubes, Numicon or Cuisenaire rods, other objects can also be used. Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \qquad Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10	Using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $14-4=10$ $10-1=9$
Using partitioning.	Using base 10 or place value counters 48-7	Children to represent the base 10 pictorially.	Children to write out their mental strategy. $\begin{aligned} & 48-7= \\ & 40-0=40 \\ & 8-7=1 \\ & 40+1=41 \end{aligned}$
Using partitioning with an exchange - leading to column subtraction.	Using base 10 or PV counters and having to exchange. $41-26$	Represent the base 10 pictorially, remembering to show the exchange.	Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

St Anselm's Mathematics Calculation Strategies Progression Map 2023-2024

				$\begin{aligned} & \hline \text { Is } \\ & \hline \text { 臓 } \end{aligned}$	$10 s$ $1 s$ $1+10$. 1 $5: \% \%$	$\begin{array}{r} 3 / 41^{\prime} 1 \\ -26 \\ \hline 15 \end{array}$
Subtracting up to 7-digit numbers using column subtraction.		above empha	sing the 'excha		Recap above emphasising the 'exchange' process.	Children should be confident in using the formal written method of column subtraction. Focus on conceptual variation and procedural variation.

Conceptual variation; different ways to ask children to solve 391-186

Word problems Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?

Calculate the difference between 391 and 186.
= 391 - 186

391 What is 186 less than 391?
-186

Progression in Multiplication EYFS - Y6

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange. Multiplicand \mathbf{x} multiplier = product

EYFS

By the end of EYFS, children are expected to understand the concept of doubling and to be able to double a number up to 10 . Before doubling can be introduced, children need to have a secure knowledge of counting, number facts and addition in order to double. Children are then introduced to the concept of doubling through practical games and activities, including the use of the outdoor areas. Children act out 'doubling' by physically add two equal groups together to find out the 'doubles' answer.

St Anselm's Mathematics Calculation Strategies Progression Map 2023-2024

\begin{tabular}{|c|c|c|c|}
\hline Strategy \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\end{tabular} \& Draw pictures to show how to double a number. Double 4 is 8
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

\square \& Partition a number and then double each part before recombining it back together.

\hline Repeated grouping / Repeated addition \& | Use different objects to add equal groups. |
| :--- |
| 'There are 3 equal groups with 3 in each' |
| 'There are 3 equal groups, with 4 in each.' $4+4+4=12$ | \& | Children to represent the practical resources in a picture and use a bar model. |
| :--- |
| There are 3 plates, each plate has 2 apples. How many apples are there all together? | \& Write addition calculations to describe pictures and objects.

$$
2+2+2=6
$$

\hline Counting in multiples \& \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |
| Start from different numbers to count in multiplies, not just zero. |

\hline
\end{tabular}

St Anselm's Mathematics Calculation Strategies Progression Map 2023-2024

	Count in multiples supported by concrete objects in equal groups.		8, 10, 12, 14 etc.
Number lines to show repeated groups	Use a ruler to show a number line. Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Use arrays to illustrate commutativity	Counters and other objects can also be used.	Children to represent the arrays pictorially. Link arrays to area of rectangles (Y4)	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply	Using Numicon, base 10 (Dienes) or Cuisenaire rods. $4 \times 15=$	Children to represent the concrete manipulatives Clearly show the 'exchange' of the 20 ones for 1 ten.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \quad 5 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used.

Conceptual variation; different ways to ask children to solve $\mathbf{6 \times 2 3}$

Bar model	
	4× $\square=20$
?	
	4

Word problems

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?

With the counters, prove that $6 \times 23=138$

Find the product of 6 and 23
$6 \times 23=$
$=6 \times 23$
---:

What is the calculation? What is the product?

Progression in Division EYFS - Y6

Key language: share, group, divide, divided by, half, repeated subtraction Dividend \div divisor $=$ quotient

EYFS

By the end of EYFS, children are expected to understand the concept of halving and sharing. Before this can be introduced, children need to have a secure knowledge of counting backwards, number facts and subtraction in order to halve and share. Children are then introduced to the concept of halving and sharing through practical games and activities. They act out 'halving and sharing' through activities. This is reinforced by opportunities provided in the outdoor area for the children to halve and share out objects such as building blocks, twigs etc.

Strategy	Concrete	Pictorial				Abstract
Halving	Using a range of objects.	Represent the sharing pictorially.				$6 \div 2=3$ Children should also be encouraged to use their 2 times table facts.
Sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. \square				$12 \div 3=4$

Grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Repeated subtraction	Using Cuisenaire rods above a ruler. $6 \div 2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
$2 \mathrm{~d} \div 1 \mathrm{~d}$ with remainders	Using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.	Children to represent the lollipop sticks pictorially.	$13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'

	There are 3 whole squares, with 1 left over.	There are 3 whole squares, with 1 left over.	
Sharing using place value counters.	$42 \div 3=14$ 000000 000	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$
Short division	Using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold. (Division bracket)

